Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dibromidobis(pyrazine-2-carboxylic acid- κN^{4})mercury (II) dihydrate

Guo-Wei Wang,* Wen-Yuan Wu, Ling-Hua Zhuang and Jin-Tang Wang

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
Correspondence e-mail: kingwell2004@sina.com.cn

Received 2 November 2007; accepted 21 November 2007

Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$; R factor $=0.070 ; w R$ factor $=0.149 ;$ data-to-parameter ratio $=13.2$.

The asymmetric unit of the title compound, $\left[\mathrm{HgBr}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains one half-molecule and one water molecule. The $\mathrm{Hg}^{\text {II }}$ ion, lying on a twofold rotation axis, is four-coordinated by two N atoms of pyrazine-2carboxylic acid ligands and two bromide ions, forming a highly distorted tetrahedral geometry. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules.

Related literature

For general background, see: O’Conner et al. (1982); Zhang (2005); Zou et al. (1999). For a related structure, see: Wang et al.(2007). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$\left[\mathrm{HgBr}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=644.63$
Monoclinic, $C 2 / c$
$a=13.895$ (1) A
$b=5.7176$ (2) \AA
$c=21.8753$ (7) \AA
$\beta=102.544$ (2) ${ }^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$V=1696.42(15) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=13.82 \mathrm{~mm}^{-1}$
$T=294$ (2) K
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$

Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.048, T_{\text {max }}=0.063$

2775 measured reflections
1480 independent reflections 1287 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.062$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$
$w R\left(F^{2}\right)=0.150$
$S=1.12$
1480 reflections
112 parameters
2 restraints

3 standard reflections every 200 reflections intensity decay: none

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=2.85 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-3.62 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{Br} 1$	$2.4234(15)$	$\mathrm{Hg} 1-\mathrm{N} 1$	$2.528(13)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 1^{\mathrm{i}}$	$153.72(12)$	$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1$	$101.2(3)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{N} 1$	$97.8(3)$	$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{N} 1^{\mathrm{i}}$	$86.9(6)$

Symmetry code: (i) $-x+2, y,-z+\frac{3}{2}$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\text {ii }}$	0.82	1.75	$2.56(2)$	166
O3-H3 $^{\text {iii }}$	$0.84(2)$	$2.28(3)$	$2.89(2)$	$130(2)$
O3-H3 $B \cdots \mathrm{~N} 2$	$0.84(2)$	$2.09(3)$	$2.93(2)$	$177(3)$

Symmetry codes: (ii) $-x+2,-y,-z+1$; (iii) $x-\frac{1}{2}, y-\frac{1}{2}, z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the Center for Testing and Analysis, Nanjing University for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2365).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

O'Conner, C. J., Klein, C. L., Majeste, R. J. \& Trefonas, L. M. (1982). Inorg. Chem. 21, 64-67.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, X.-F., Lv, Y., Okamura, T., Kawaguchi, H., Wu, G., Sun, W.-Y. \& Ueyama, N. (2007). Cryst. Growth Des. 7, 1125-1133.
Zhang, B.-S. (2005). Chin. J. Struct. Chem. 24, 478-482.
Zou, J.-Z., Xu, Z., Chen, W., Lo, K. M. \& You, X.-Z. (1999). Polyhedron, 18, 1507-1512.

supplementary materials

Dibromidobis(pyrazine-2-carboxylic acid- κN^{4})mercury(II) dihydrate

G.-W. Wang, W.-Y. Wu, L.-H. Zhuang and J.-T. Wang

Comment

Functional materials built up by organic ligands and metal ions, especially transition metals, have potential applications in optics, electronics, magnetics, biology, catalyst and medicine (Zhang, 2005; O'Conner et al., 1982). Pyrazine-2,3-dicarboxylic acid, having six possible coordination sites, is a good ligand with versatile coordination types, which is widely used in the self-assembled polymeric coordination synthesis (Zou et al., 1999; Wang et al., 2007). The title compound, (I), was obtained unintentionally as the product of a hydrothermal synthesis of pyrazine-2,3-dicarboxylic acid and mercury(II) bromide. Under high temperature as 413 K and mercury(II) ion catalyst, pyrazine-2,3-dicarboxylic acid is likely to decarboxylate as 2-pyrazine carboxylic acid. We report herein the crystal structure of (I), a complex containing the ligand of 2-pyrazine carboxylic acid.

The asymmetric unit of (I), (Fig. 1), contains one half-molecule and one water molecule, in which the bond lengths and angles are within normal ranges (Allen et al., 1987). The $\mathrm{Hg}^{\text {II }}$ ion lying on a twofold rotation axis, is four -coordinated (Table 1) by two N atoms of pyrazine carboxylic acid ligands and two bromide atoms. The two pyrazine rings are oriented at a dihedral angle of $78.4(9)^{\circ}$.

The $\mathrm{Hg}-\mathrm{N}[2.528(13) \AA$] bond is slightly longer, while $\mathrm{Hg}-\mathrm{Br}[2.4234(15) \AA$] bond is slightly shorter than the corresponding values [2.270 (5) \AA and 2.5269 (7) \AA, respectively] in $\left[\mathrm{Hg}(\mathrm{bib}) \mathrm{Br}_{2}\right] 0.5 \mathrm{THF}$ (where bib is 1-bromo-3,5-bis(imidazol-1-ylmethyl)benzene) (Wang et al., 2007).

In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2, Fig. 2) link the molecules, in which they seem to be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, mercury(II) bromide ($360 \mathrm{mg}, 1 \mathrm{mmol}$) and 2,3-pyrazine dicarboxylic acid (168 $\mathrm{mg}, 1 \mathrm{mmol})$ were dissolved in a mixed solvent of ethanol $(5 \mathrm{ml})$ and acetonitrile $(5 \mathrm{ml})$. Then the mixture was added into a Teflon-lined stainless steel autoclave at 413 K for 2 d . The green crystals were obtained after cooling to room temperature and was filtrated. Elemental analysis calcd: C 19.58%, H 4.40\%, N 45.60%; Found: C 19.51%, H 4.35%, N 45.53%.

Refinement

H atoms (for $\left.\mathrm{H}_{2} \mathrm{O}\right)$ were located in a difference map and refined $\left[\mathrm{O}-\mathrm{H}=0.84(2)\right.$ and $\left.0.84(2) \AA, U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$. The remaining H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ (for OH) and $\mathrm{C}-\mathrm{H}=0.93 \AA$, for aromatic H atoms and constrained to ride on their parent atoms, with $U_{\mathrm{iso}}(\mathrm{H})=x U_{\mathrm{eq}}(\mathrm{C}, O)$, where $x=1.2$ for aromatic H and $x=$ 1.5 for OH H atoms.

supplementary materials

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code A: $2-x, y, 3 / 2-$ $z]$. Hydrogen bonds are shown as dashed lines.

Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Dibromidobis(pyrazine-2-carboxylic acid-к N^{4})mercury(II) dihydrate

Crystal data

$\left[\mathrm{HgBr}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=644.63$
Monoclinic, $C 2 / c$
Hall symbol: -C 2yc
$a=13.895$ (1) \AA
$b=5.7176$ (2) \AA
$c=21.8753$ (7) \AA
$\beta=102.544$ (2) ${ }^{\circ}$
$V=1696.42(15) \AA^{3}$
$Z=4$
$F_{000}=1192$
$D_{\mathrm{x}}=2.524 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=9-13^{\circ}$
$\mu=13.82 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, green
$0.4 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=294(2) \mathrm{K}$
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.048, T_{\text {max }}=0.063$
2775 measured reflections
1480 independent reflections
1287 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$\theta_{\text {max }}=25.1^{\circ}$
$\theta_{\text {min }}=1.9^{\circ}$
$h=-16 \rightarrow 8$
$k=-6 \rightarrow 5$
$l=-20 \rightarrow 26$
3 standard reflections
every 200 reflections
intensity decay: none

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$
$w R\left(F^{2}\right)=0.150$
$S=1.12$
1480 reflections
112 parameters
2 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1015 P)^{2}+4.7441 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=2.85 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-3.62$ e \AA^{-3}
Extinction correction: SHELXL,
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.0045 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Hg1	1.0000	$1.10939(9)$	0.7500	$0.0355(4)$
Br1	$1.16422(12)$	$1.2057(6)$	$0.73701(9)$	$0.0525(6)$
C1	$0.8717(5)$	$0.6941(4)$	$0.6566(4)$	$0.039(4)$
H1	0.8234	0.7561	0.6754	0.047^{*}
C2	$0.8499(5)$	$0.5080(4)$	$0.6166(4)$	$0.041(4)$
H2	0.7871	0.4427	0.6093	0.050^{*}
C3	$1.0047(6)$	$0.5069(4)$	$0.6006(6)$	$0.030(3)$
C4	$1.0302(6)$	$0.6941(6)$	$0.6411(6)$	$0.043(5)$
H4	1.0940	0.7538	0.6490	0.051^{*}
C5	$1.0825(6)$	$0.4040(4)$	$0.5701(5)$	$0.029(3)$
N1	$0.9628(7)$	$0.7881(7)$	$0.6688(6)$	$0.033(3)$
N2	$0.9161(7)$	$0.4188(7)$	$0.5885(5)$	$0.034(3)$
O1	$1.1642(8)$	$0.4862(6)$	$0.5761(6)$	$0.046(3)$
O2	$1.0514(10)$	$0.2121(5)$	$0.5379(6)$	$0.060(4)$
H2A	1.0954	0.1606	0.5221	0.090^{*}

O3	$0.8315(9)$	$0.0042(3)$	$0.5179(6)$	$0.051(3)$
H3A	$0.794(2)$	$-0.090(3)$	$0.531(2)$	0.077^{*}
H3B	$0.857(2)$	$0.123(2)$	$0.537(2)$	0.077^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.0234(5)$	$0.0443(7)$	$0.0442(6)$	0.000	$0.0149(3)$	0.000
Br 1	$0.0263(10)$	$0.0587(14)$	$0.0617(13)$	$-0.0056(8)$	$0.0225(9)$	$0.0088(10)$
C 1	$0.029(9)$	$0.045(10)$	$0.047(10)$	$0.007(8)$	$0.017(7)$	$-0.011(8)$
C 2	$0.031(8)$	$0.050(11)$	$0.045(10)$	$0.000(9)$	$0.014(7)$	$-0.004(9)$
C 3	$0.027(7)$	$0.044(10)$	$0.021(7)$	$-0.011(7)$	$0.005(6)$	$0.003(7)$
C 4	$0.029(8)$	$0.051(13)$	$0.027(8)$	$0.004(9)$	$0.020(7)$	$-0.009(8)$
C 5	$0.035(9)$	$0.032(8)$	$0.033(7)$	$0.001(7)$	$0.012(6)$	$0.006(7)$
N 1	$0.037(7)$	$0.034(8)$	$0.032(7)$	$0.000(6)$	$0.012(6)$	$-0.012(6)$
N 2	$0.033(6)$	$0.053(9)$	$0.028(6)$	$-0.012(6)$	$0.002(5)$	$-0.008(6)$
O 1	$0.030(6)$	$0.054(8)$	$0.051(7)$	$-0.011(6)$	$0.016(5)$	$-0.020(6)$
O2	$0.050(8)$	$0.061(9)$	$0.057(9)$	$-0.010(7)$	$0.033(7)$	$-0.039(8)$
O3	$0.039(7)$	$0.052(9)$	$0.052(9)$	$-0.014(7)$	$0.033(6)$	$-0.030(7)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Hg} 1-\mathrm{Br} 1$	$2.4234(15)$
$\mathrm{Hg} 1-\mathrm{Br} 1^{\mathrm{i}}$	$2.4234(15)$
$\mathrm{Hg} 1-\mathrm{N} 1$	$2.528(13)$
$\mathrm{Hg} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.528(13)$
$\mathrm{C} 1-\mathrm{N} 1$	$1.351(7)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.369(8)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300
$\mathrm{C} 2-\mathrm{N} 2$	$1.310(6)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{N} 2$	$1.303(8)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 1^{\mathrm{i}}$	$153.72(12)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{N} 1$	$97.8(3)$
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1$	$101.2(3)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{N} 1^{\mathrm{i}}$	$101.2(3)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{N} 1^{\mathrm{i}}$	$97.8(3)$
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{N} 1^{\mathrm{i}}$	$86.9(6)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$120.3(8)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.8
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.8
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{C} 1$	$121.3(8)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2$	119.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.4
$\mathrm{~N} 2-\mathrm{C} 3-\mathrm{C} 4$	$122.0(7)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 5$	$119.6(8)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$	$-1.0(12)$

$\mathrm{C} 3-\mathrm{C} 4$	$1.381(6)$
$\mathrm{C} 3-\mathrm{C} 5$	$1.510(7)$
$\mathrm{C} 4-\mathrm{N} 1$	$1.334(10)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{O} 1$	$1.209(18)$
$\mathrm{C} 5-\mathrm{O} 2$	$1.327(19)$
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8200
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A}$	$0.84(2)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$0.84(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 5$	$118.4(6)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$119.6(7)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{H} 4$	120.2
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.2
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{O} 2$	$124.8(7)$
$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 3$	$123.1(8)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 3$	$112.1(6)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$118.1(7)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Hg} 1$	$118.0(10)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{Hg} 1$	$123.7(11)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$118.7(8)$
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{H} 3 \mathrm{~A}-\mathrm{O} 3-\mathrm{H} 3 \mathrm{~B}$	$125(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{Hg} 1$	

sup-4

supplementary materials

$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$-0.3(13)$
$\mathrm{C} 5-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$-179.9(15)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 5-\mathrm{O} 1$	$175.2(15)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 5-\mathrm{O} 1$	$-4.8(12)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 5-\mathrm{O} 2$	$-7.1(11)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 5-\mathrm{O} 2$	$173.3(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$0.3(9)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Hg} 1$	$-175.1(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	$1.2(9)$
Symmetry codes: $(\mathrm{i})-x+2, y,-z+3 / 2$.	

$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 1$	$-174.8(12)$
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 1$	$-13.0(13)$
$\mathrm{N} 1 \mathrm{i}^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 1$	$84.4(13)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 4$	$10.9(13)$
$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 4$	$172.7(13)$
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 1-\mathrm{C} 4$	$-89.9(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$1.8(12)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$-1.1(11)$
$\mathrm{C} 5-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$178.5(14)$

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{ii}}$	0.82	1.75	$2.56(2)$	166
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{iii}}$	$0.84(2)$	$2.28(3)$	$2.89(2)$	$130(2)$
$\mathrm{O} 3 — \mathrm{H} 3 \mathrm{~B} \cdots \mathrm{~N} 2$	$0.84(2)$	$2.09(3)$	$2.93(2)$	$177(3)$

Symmetry codes: (ii) $-x+2,-y,-z+1$; (iii) $x-1 / 2, y-1 / 2, z$.

supplementary materials

Fig. 1

Fig. 2

